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ABSTRACT 
 

 Network security in information and telecommunication systems, reaction with harmful content in 
social networks are essential problems today. Virus attacks and distribution of unwanted contents efficiency 
depends on the attacked system structure. For this reason, the study of complex networks with degree of 
nodes distribution by Poisson distribution has great interest. This article is about modeling of layering growth 
virus epidemic and spread of harmful content on Poisson networks. This article is about modeling of layering 
virus infection growth process on heterogeneous Poisson networks. This paper contains probabilistic 
calculations of information risks in information and telecommunication systems with virus epidemic. This 
model can be used not only for epidemic analysis, but also for analyzing the spread of harmful content on 
networks.   
Keywords: risk models, virus epidemics, complex networks, random networks, Poisson networks.  
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INTRODUCTION 
 

Many  articles contain information about above mentioned problems [1-6, 24, 25], these papers are 
about counteraction in networks.  

 

Quantity of layers depends on number of peaks N and the   law of distribution peak’s levels )(kP . In 

articles [7-15] analysable network class had  fixed level of peaks. It is characteristic for rigidly organized 
networks of lattice type. The heterogeneous structure of communications is characteristic for Poisson 

networks. Hereof, 1min k and maxk is calculated by function )(xH from Fig. 1. Function )(xH is a mapping 

from set  1,0x  within a set  ,...2,1,0y , yxxH :)( . As )(/1 maxkPN  , maxk can be defined as 

function depending on N/1 : 

 

  )(/1max NHNHk  . 

 

For Xx , Yy , )(xHy   only  when .!yex y    

 

The function will be surjective, if  max,0 xx . 

 
Analysing will be similar for multi-layer formalization on vulnerability (danger) level, but the exponent 

will be the function modeling infection spread.  
 

 
 

Fig.1. Calculating maxk  

Such multi-layer formalization gives opportunities for complex multilevel analyses of network in 
separate level infection context. 

 
Thus, the situation for multy-layer formalization of a network on level peaks aspect will be following:  

1. The attack from low layers on high layers is improbable )),...,1(( maxkk  ;  

2. Natural attack on a layer ),...,( kk ; 

3. Attacks from high layers to the lower are easily feasible )),...,1(( minkk  .; 

4. Attacks in all directions directly. 
Infection probability will be defined as: 

!)( kekPP k

kkk   . 

The clustering coefficient for the non-uniform Poisson networks is calculated using the formula 

 1 nkK ,   (1) 

where n is  number of nodes in the graph. 
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The clustering coefficient shows how strongly peaks are inclined to form groups (community), which 
are characterized by that the peaks entering into one group are connected among themselves much more 
densely, than  all remaining graph. 

 
 
 
 Taking into account clustering coefficient(1): 
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where k is clustering coefficient, k is correction coefficient. Level of layer danger depends on 

communities number directly, therefore two coefficients can be replaced: 
 

!)( kKekKPP k

kkk   , 

where kkk   . 

 
Thus all peaks on a network have different weight.  The  higher the layer is, the bigger weight peaks 

have. We will consider weight (peak value layerwise) under risk – analysis context and in considering damage 
assessment. For k- layer we have: 

)(kPk   .   (2) 

 
The summary peaks value of a network layerwise: 

k
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knC 



1

 ,   (3) 

 

where )(kNPnk  is number of  peaks  in k-layer. 

We will add in expression (3) k from formula (2).  
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We will express   from  formula (4):  

NNH

C

MN

C

)1)(( 
 , 

where NNH )1)((  is n network potential. 

 
Risk in the epidemiological simulation context is probability of that network separated nodes, layers 

of a network or all network  will be damaged entirely. Therefore, we will calculate damage and risk to a 
network, proceeding from the selected scale: network node, layer of a network or whole network [11].  

 
We will calculate damage from infectioned node in a Poisson non-uniform network:  
 

tkt

k

i SkU  ,  (5) 

 

where k  is weight of a node in k - layer of a Poisson network; tS is number of no infection nodes in 

Poisson network. Further, we will add the formula (5) in expression (2), and we will get: 
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tt

k

i SkPkU )( ,   (6) 

 

where )(kP is Poisson distribution. Proceeding from the formula (6), the quantity of not infected 

nodes of a Poisson non-uniform network at timepoint t will be determined by the formula: 
 

ttt TINS  , 

 

where tTI is total quantity of infected nodes (total infected). We will write the difference equation for 

finding total quantity of the infected nodes in a Poisson network. It will be calculated by the formula: 
 

01...1  tt TITI .   (7) 

 

Let n ..., 21   be  roots of  characteristic equation: 

 

0...)( 1
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t TITITIQ  . (8) 

 
Then the common solvation will be as following: 
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where 

t
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1  . 

 
Thus, having added expressions (7) and (8) in (9), and also having replaced by Poisson’s formula of 

distribution, function of damage at timepoint to a node i of layer k taken form: 
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Further we will calculate risk for a network node. The probability of peak infection with an infection is 

constant on lattice networks with constant value k. In our case, when distribution of nodes levels is under 
Poisson law, the probability is not  constant. 

 
Therefore, we will express the probability of peak’s infection  by  formula: 
 

)(kPap kk  , 

where ka  is the normalizing coefficient considering a level of infection danger to this layer.  

 
The infection probability of peak in layer k is calculate by  formula [9]: 
 

)(kPpP kk  . 

 
We can find infection risk at the time of the beginning of epidemic, considering the above-stated 

formulas: 

kkPRisk 0 . 

Therefore: 
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)(0 kPRisk k .  (10) 

 
Having added the distribution law of Poisson in the formula (10), we will get risk at a zero stage (the 

beginning of epidemic) of epidemic development proceeding on a spatial non-uniform network:  
 

!0 keRisk k

k   . 

 
 

Connectivity matrixes of layers and micro fractals specifics of Poisson networks varieties 
 
For epidemic simulation on a spatial Poisson network it is necessary to construct a matrix of layerwise 

intra network connectivity. Table 1 and 2 most precisely displays multi-layer feature of a spatial network. 

 
TABLE.1. Matrix of layerwise connectivity 

 

K(kmin|kmin)   K(kmin|k)   K(kmin|kmax) 

          

K(k|kmin)   K(k|k)   K(k|kmax) 

          

K(kmax|kmax)   K(kmax|k)   K(kmax|kmin) 

 
TABLE.2. A matrix of layerwise connectivity for Poisson network model 

 

K(1|1)   K(1|k)   K(1|H(N)) 

          

K(k|1)   K(k|k)   K(k|H(N)) 

          

K(H(N)|1)   K(1|k)   K(H(N)|1) 

 
This matrix has number of properties. In particular, elements amount in each  line is equal to  number 

of these lines, i.e.: 





max

min

)|(
k

ks

kskK . 

 
Besides, the matrix ||k|| is symmetric to K  diagonals: 
 

maxmin )1(,),|()|( kkjiijKjiK  . 

 
 
We will use this matrix in further calculations. 
 

For a spatial network we have  maxmin ,..., kkM   layers, where  

 

1)(minmax  NHkkM . 

 
The infected peak of level k has opportunity to interact with other layers by rules of matrix || K || - 

matrixes of layerwise intra network connectivity [5]. 
 

Then the probability of that there will be a contact with infected peak in layers (according to the 
polynomial law on the appropriate line of a matrix || K ||), will be equal to: 
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 )|()...|()...|( maxmin kkKkkKkkKP  
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1  , 

 

where )|( ksKks  at maxmin )1( kks  , and 
Mkk ,...,1

 are non-negative integers such that 

kkk M  ...1
.  

 
For Poisson distribution, we will get: 
 

 ))(|()...|()...1|( NHkKkkKkKP .
)()1)((!!...

))!((

)1)((!!...

)!1)((

11 NHNHkk

NH

NHkk

NH
k

M

k

M 





  

 
From here it is obviously possible to define the expected quantity of the peaks which were caught in 

this s-layer (on the first step): 
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And damage size in s-layer: 
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where ][ sskp  is the whole part of a mathematical expectations for quantity of infected (at contact 

with k-tops) s-layers. The damage on the first step of epidemic process will be calculated by: 
 





max

min

][]1[
k

kS

suu . 

 
Further we will define quantity of s-layer tops which were not infected from here: 
 

])1[(]1[ sss kps  . 

 
Epidemic micro-models for layers of Poisson networks 
 

We will consider infection spread within one network layer, using the scenario of network attack to an 
information and telecommunication network by network virus on the STL model. Infection spread begins with 
one layer k. In this model, virus infection within one level will be shown. The considered process can be 
sampled, as were in the previous works [3, 15-18]. Elements of an information and telecommunication 
network on the STL model can belong to one of following subsets:  

 

1. Not infected knots in a timepoint )( tSt  – a set of elements which weren't  infectioned  yet. As soon 

as the knot is attacked, it passes into group of the infected knots ][tS  – quantity of not caught 

elements in  timepoint t of epidemiological process; 

2. The infected knots at timepoint )( tLt  are elements which are already infected from an infection 

source. ][tL  –infected elements quantity at  timepoint t of epidemiological process;  

3. Sick knots in a time point )( tTt  – elements which are sick, but not infected. These knots act as 

sources of infection for other knots. ][tT  is quantity of sick elements at  timepoint t of 

epidemiological process;  
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4. New knots in a time point )( tNt  are elements which are new, just added for this network. ][tN  is 

quantity of new elements in a time point t of epidemiological process; 

5. Died knots at  timepoint )( tDt  – elements which failed on development of the resource. ][tD  are 

dead elements number at  timepoint t of epidemiological process. 
 
We will describe development parameters of information epidemic as follows: 
 

tS - quantity of not infected knots at timepoint t. 

tL - quantity of the infected knots at timepoint t; 

tT  - number of sick knots at timepoint t; 

tN  - number of sick knots at timepoint t; 

1ttD - number of dead knots from time point t to t +1; 

1ttB - inflow of new knots in a network to a period with t to t +1; We will designate size as tN ; 

1ttL - quantity of the infected knots in a network; in period t to t +1; We will designate size as tT ; 

1ttDS - number of dead knots in group S in period t to t +1; we Will designate size as tS1 ; 

1ttDT - number of dead knots in group L in a period with t to t +1; we will designate size as tL2 ; 

 1ttDT  – number of dead knots in group T in a period with t to t +1; we will designate size as ;3 tT  

1ttT  – number of diseased in a period with t to t +1; we will designate size as tL ; 

1ttT  – quantity of cured knots in a period with t to t +1; we will designate size as tT . 

Therefore, the scheme of model will look as follows (Fig. 2). 
 

 
 

Fig. 2. The scheme of distribution epidemic on network knots model 

We will work out the differential equations describing this model. 
 

The quantity of knots which weren't infected in a time point of t +1 will be defined as: 
 

1111   tttttttt LDSBSS . 

 
The quantity of infected knots in a time point of t +1 will be defined as: 
 

11111   tttttttttt TDLHLLL . 

 
The number of patients at  time point of t +1 will be calculated by : 
 

1111   ttttttttt HDTTTT . 

 
The number of new knots in a time point of t +1 will be as following: 
 

111   ttttttt DBNN . 
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The number of dead knots in a time point of t +1 will be  as following: 
 

1111   tttttttt DSDLDTD . 

 
The  system of differential equations describing the STL model of spreading infection within one level 

will look as follows: 
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Now we will construct a micro fractal for the STL model. For this purpose, being guided by the 

constructed schemes of virus epidemic distribution in a Poisson non-uniform network, we will construct a 
micro fractal for infection knots of a network STL model [10].  

 
Further, being guided by the scheme of virus epidemic distribution in a Poisson non-uniform network, 

we will construct a micro fractal of knots infection model (figure 3). We will depict classes of network knots, 
and also transition conditions for knots from a class to a class in it.  

 
We will allocate layer incubator: not infected, patients (latent infected) and infected knots.  
 
Infection develops here, receiving one of several states (L or T). The dead knots are treated in a layer 

hospital.  
 

 
 

Fig. 3. A micro fractal of the epidemic process proceeding in a Poisson non-uniform network 

 
We will remind that the micro fractal is constructed in a homogeneous environment, that is within the 

chosen s-layer of a network [16-23].  On Fig. 3, we see that the infected knot (in case it didn't pass into a 
condition of R – restored or D – disconnected) can become a source of secondary infection, and the infection 
passes to other layers of network. 

 
We will consider probabilities of knots transition from one state into another (Table 3). 

 
TABLE.3. Characteristics of sets of a micro fractal 

 

Designation Designation interpretation 

|S(s)| A  power of set of not infected knots in s layer 

|L(s)| A power of set of infected knots in s layer 

|T(s)| A set power of sick knots in s layer 
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|D(s)| A set power of the failed knots in s layer 

|Iвх| A set power of the infected knots on an entrance 

|Iвых| A  power of set of the infected knots at the exit 

 
We will designate probabilities of transition as (Table 4): 

 
TABLE.4. Probabilities of knots transition to various states 

 

Designation Designation interpretation 

PSL(s) Probability of knot transition from condition S to L 

PSD(s) Probability of knot transition from condition L to I 

PLT(s) Probability of knot transition from condition L to R 

PLD(s) Probability of knot transition from condition L to D 

PTL(s) Probability of knot transition from condition I to D 

PTD(s) Probability of knot transition from condition I to R 

PI(s) Emergence probability of a secondary source 

 
Thus, we can make the linear count of a micro fractal (Fig. 4) and show on it probabilities of knots 

transition from one state to another state [16]: 

 
 

Fig. 4 – Linear count of a micro fractal 

Considering all aforesaid, it is possible to work out the differential equations for each of sets. As a 
result it is necessary to calculate |Iвых| – a set of secondary sources of  power infection, that is knots which will 
transmit  infection to other layers of network. In figure 4 Kss is a share of not infected (susceptible) knots from 
layer s [16]. This size is calculated by formula: 

sss nsSK )( , 

 

where sn is number of knots in layer s. 

 
Thus, the equation for the set of not infected power knots  will be following: 
 

ssвх KIsS )( . 

 
The equation for finding  uninfected knots set power is: 
 

)()()()()( sPsTsPsSsL TLSL  . 

 
The equation for finding a set of infected knots power is: 
 

)()()( sPsLsT LT . 
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The equation for finding a set of disconnected knots power has an appearance: 
 

)()()()()()()( sPsSsPsLsPsIsD SDLDTD   According to Mason's formula, the probability of 

infection transmission from an entrance to an exit  sp  will be equal to: 

 

n

ss
s

LLL

PK
p




...1 21

,  (11) 

 

where P is work of branches transfer of a way from an entrance to an exit; nLLL ,, 21  are the closed 

contours in the linear count. 
 
From figure 4 we see that the way from an entrance to an exit represents work of branches count: 
 

)()()( sPsPsPP ILTSL .  (12) 

 
Further we will depict quantity of the closed contours in the column. As a result, we get one contour: 
 

)()(1 sPsPL TLLT .  (13) 

 
Having substituted formulas  (12) and (13)  formula (11), we get: 
 

 )()(1

)()()()(

sPsPn

sPsPsPsS
p

TLLTs

ILTSL

s


 . 

 
Now we can find a set of secondry power sources of   infection at the s-layer exit: 
 

)|( ksKpI sвыхs  , 

 

where )|( ksK  is a line of a connectivity matrix of s and k layers. 

 
CONCLUSION 

 
In this model, virus infection within one level will be shown. This article is about modeling of layering 

growth virus epidemic and spread of harmful content on Poisson networks. This article is about modeling of 
layering virus infection growth process on heterogeneous Poisson networks. This paper contains probabilistic 
calculations of information risks in information and telecommunication systems with virus epidemic. Their 
sharpness is largely dependent on the structural and functional features of the attacked network, and in this 
respect it is important to study attacks on networks with Poisson distribution. 
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